Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available September 1, 2026
-
Vision-based methods are commonly used in robotic arm activity recognition. These approaches typically rely on line-of-sight (LoS) and raise privacy concerns, particularly in smart home applications. Passive Wi-Fi sensing represents a new paradigm for recognizing human and robotic arm activi- ties, utilizing channel state information (CSI) measurements to identify activities in indoor environments. In this paper, a novel machine learning approach based on discrete wavelet transform and vision transformers for robotic arm activity recognition from CSI measurements in indoor settings is proposed. This method outperforms convolutional neural network (CNN) and long short- term memory (LSTM) models in robotic arm activity recognition, particularly when LoS is obstructed by barriers, without relying on external or internal sensors or visual aids. Experiments are conducted using four different data collection scenarios and four different robotic arm activities. Performance results demonstrate that wavelet transform can significantly enhance the accuracy of visual transformer networks in robotic arms activity recognition.more » « less
-
Despite the current surge of interest in autonomous robotic systems, robot activity recognition within restricted in- door environments remains a formidable challenge. Conventional methods for detecting and recognizing robotic arms’ activities often rely on vision-based or light detection and ranging (LiDAR) sensors, which require line-of-sight (LoS) access and may raise privacy concerns, for example, in nursing facilities. This research pioneers an innovative approach harnessing channel state in- formation (CSI) measured from WiFi signals, subtly influenced by the activity of robotic arms. We developed an attention- based network to classify eight distinct activities performed by a Franka Emika robotic arm in different situations. Our proposed bidirectional vision transformer-concatenated (BiVTC) methodology aspires to predict robotic arm activities accurately, even when trained on activities with different velocities, all without dependency on external or internal sensors or visual aids. Considering the high dependency of CSI data on the environment motivated us study the problem of sniffer location selection, by systematically changing the sniffer’s location and collecting different sets of data. Finally, this paper also marks the first publication of the CSI data of eight distinct robotic arm activities, collectively referred to as RoboFiSense. This initiative aims to provide a benchmark dataset and baselines to the research community, fostering advancements in the field of robotics sensing.more » « less
An official website of the United States government

Full Text Available